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In this paper a weakly non-linear beam system subjected simultaneously to parametric
and harmonic excitations is studied. There are many types of resonant phenomena under
these loading conditions. The weakly non-linear differential equation is derived by use of
the averaging method and the method of multiple scales. Even for the first approximate
solutions, it is found that different results arise due to the existence of a non-linear inertia
factor of the governing equation. The transient amplitudes obtained by these two methods
are compared with those obtained by the Runge–Kutta method. Steady state responses are
also shown for the various cases of resonances.
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1. INTRODUCTION

A system which consists of a beam with simply supported ends subjected to a perodically
axial force can be reduced to the Mathieu equation from the partial differential equation
by using mode separation. Bolotin [1] studied various non-linear effects on the steady state
responses for such a system by the harmonic balance method. A comprehensive review of
the response of single- and multi-degree-of-freedom systems subjected to the parametric
excitations has been given by Evan-Iwanowski [2], Ibrahim and Barr [3, 4] and Nayfeh and
Mook [5].

A harmonic forced system with cubic non-linearities may have resonances at primary,
one-third subharmonic and superharmonic resonances of order 3. Ness [6] classified
various types of resonant phenomena for a weakly non-linear, single-degree-of-freedom
system subjected to one time-varying force and one parameteric excitation. Troger and Hsu
[7] studied the response of a non-linear system under combined parametric and forcing
excitations which are of the same frequency. Sato et al. [8] applied the harmonic balance
method to solve the parametric response of a simply supported, horizontal beam, carrying
a concentrated mass under the influence of gravity. They investigated the effects of the
weight and the location of the concentrated mass on the steady state, free and parametric
responses of the beam, but neglecting the non-linear terms. Lau et al. [9] applied the
variable parameter incrementation method to determine the parametric instability
boundary of linear and non-linear elastic columns. Yagasaki et al. [10] applied the
averaging method to establish the existence of an invariant tori and to analyze the stability
properties of a weakly non-linear single-degree-of-freedom system subjected to combined
parametric and external excitations. In these papers mentioned above, the non-linear
inertia term was not considered.
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In certain dynamic problem one must consider not only the non-linear elasticity but also
the non-linear inertia force. The existence of non-linear elasticity leads to an increase of
the frequency with amplitude; non-linear inertia causes a decrease of the natural frequency.
Evensen and Evan-Iwanowski [11] performed analytical and experimental investigations
of the effect of longitudinal inertia upon the elastic column. Atluri [12] used the
perturbation method of multiple time scales to investigate the non-linear vibration of a
hinged beam, including the non-linear inertia effect. Calculated results showed that the
predominant non-linearity due to the non-linear longitudinal inertia is of the softening
type. Sunakawa and Higuchi [13] showed the parametrically unstable phenomenon of a
simply supported thin column can be evaluated using a relatively simple non-linear
equation. Ashworth and Barr [14] used the generation solution, which includes slowly
varying mean terms and linear forced response components, to analyze the resonances
of structures with quadratic inertia non-linearity under both direct and parametric
excitations. They showed that the linear parametric terms and inertial non-linearities can
have the same ranking of importance when the structure is at external and/or internal
resonances.

In this paper, we try to investigate a beam system as shown in Figure 1, subjected to
one axially and one laterally harmonic excitations with different frequencies. These two
excitations have the same order in magnitude. The subsystem, including the spring, the
extra mass and the guideway, is added on the top of the beam, to affect the dynamic
properties of the main beam system. The subsystem components are the main sources of
the non-linearities occurring in the ordinary differential equation. In this paper, two
methods, the averaging method and the method of multiple scales, are employed to study

Figure 1. An analytical model of the oscillation beam.
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the difference, which may come out between these two approaches. Our attention is
focused on the non-linear inertia factor, which causes different results between the
averaging method and the method of multiple scales, even if only the first approximation
is retained. The two analytical methods are used to obtain the results and compared with
the results obtained by the direct numerical integration which we used as the exact solution
for comparison.

2. ANALYTIC WORK

The analytic model, as shown in Figure 1, is a simply supported beam subjected
simultaneously to an axial load P0 +Pt cos v̄t and a laterally distributed force E� cos v̄1 t.
By using the Euler beam theory and considering the viscous damping during vibration,
the equation of motion of the beam will be written as

EI
14v(s, t)

1s4 + q(t)
12v(s, t)

1s2 +m
12v(s, t)

1t2 +C
1v(s, t)

1t
=E� cos v̄1 t, (1)

where v(s, t) is the transverse deflection, EI is the bending stiffness, q(t) is the total
longitudinal force, m is the mass per unit length of the beam and l is its total length. The
influence of large curvature [1] is equivalent to that of a longitudinal elasticity coupling
with a spring stiffness p2EI/2l3 and an inertial mass coupling with a mass (1

3 −3/8p2)ml
added at the upper end of the beam. During vibration, (a) the spring force, −kW, which
arises from the reaction of the spring; (b) the resistance force, −CLW, which occurs due
to the guidance of the moving support and (c) the inertia force, −MLW� , are added to the
system. Thus, the total longitudinal force is

q(t)=P0 +Pt cos v̄t−KW−CLW� −MW� , (2)

where

M=ML +01
3 −

3
8p21 ml, K= k+ p2 EI

2l3
,

and

W= l−g
l

0

z1− (1v/1s)2 ds

is the relationship between the longitudinal displacement W and the lateral deflection v.
Since experimental evidence of Sunakana and Higuchi [13] and Somerset and

Evan-Iwanowski [15] showed that the first spatial mode is dominant, the first mode
solution for (1) could be sought in the form

v(s, t)= f(t) sin (ps/l), (3)

which satisfies the simply supported end conditions

v(0, t)= v(l, t)=
12v(0, t)

1s2 =
12v(l, t)

1s2 =0. (4)

Substituting equation (3) into equation (1) and using the orthogonal conditions, we
obtain

f� +V2f+2z�f� −2V2m̄ cos v̄tf + ḡf 3 +2ōL f 2f� +2ā( f 2f� +ff� 2)= ē cos v̄1t, (5)
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where

ē=
2
ml g

l

0

E� sin
ps
l

ds,

V is the mode frequency, z� is the damping factor, and m̄ is the parametric load parameter.
Coefficients of non-linear terms, including the factor of non-linear elasticity ḡ, the factor
of non-linear damping ōL , and the factor of non-linear inertia ā, are non-negative and are
small constants (see Appendix 3). It should be noticed that equation (5) reduces to the
forced Mathieu equation when the parametric excitation m̄$ 0 and ḡ= ōL = ā=0, to the
forced Duffing equation when the non-linear stiffness ḡ$ 0 and m̄= ōL = ā=0, and to
the forced van der Pol equation when the non-linear damping ōL $ 0 and m̄= ḡ= ā=0.
The Mathieu, Duffing and van der Pol equations are well documented in the analyses of
steady state responses. In the present paper, we will focus on the study of the effect of the
non-linear inertia.

Here we are interested only in a weakly non-linear system with a small dimensionless
parameter o, 0Q o�1. The excitational amplitude E� is assumed to be a constant, not a
function of s, and ē/V2 is so small that it is of order O(o). Non-dimensionalizing equation
(5) by introducing the time transformation t=Vt, one obtains

f 0+ f= oQ( f, f ', f 0, t)+O(o2), (6)

where

Q( f, f ', f 0, t)=−2zf '+2m cos vtf− gf 3 −2oL f 2f '−2a( f 2f 0+ff'2)+e cos v1t,

z�/V= oz, m̄= om̄, ḡ/V2 = og, ōL /V= ooL , ā= oa, ē/V2 = o e,

and ( · )'=d( · )/dt. The dimensionless parameters z, m, g, oL and a and the excitational
frequencies v= v̄/V and v1 = v̄1/V all have the same order O(1). Except for the external
excitation term oe cos v1t, equation (6) is similar to equation (8) of reference [16], which
was approached by the averaging method.

It should be noticed that the term 2oaf 2f 0 due to non-linear inertia in oQ( f, f ', f 0, t)
could be considered as a feedback of f 0. We put f 0 and 2oaf 2f 0 together to be (1+2oaf 2)f 0.
Since coefficient 1+2oaf 2 is always not zero, by dividing every term of equation (6) by
it and neglecting the terms of order O(o2) and higher, equation (6) becomes

f 0+ f= oM( f, f ', t)+O(o2), (7)

where

M( f, f ', t)=−2zf '+2m cos vtf−(g−2a)f 3 −2oL f 2f '−2aff '2 + e cos v1t.

The oM( f, f ', t) in equation (7) is relatively small and can be regarded as a perturbation
of the linear homogeneous differential equation. In the next section, the averaging method
will be applied to equation (7), not to equation (6). The term oM( f, f ', t) does not contain
the inertia term f 0, but f 0 was included in the perturbation terms (8) of reference [16]. This
is the main difference between the governing equation being studied in the present paper
and that of reference [16]. It is seen that, from the procedure of equations (6) and (7), the
non-linear inertia term 2oaf 2f 0 in oQ( f, f ', f 0, t) is replaced by the equivalent non-linear
stiffness −2oaf 3 in oM( f, f ', t). This means that equation (6) is equivalent to equation (7)
only if f 0=−f; that is, the solution f(t) is a harmonic function with unit angular
frequency.
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3. AVERAGING METHOD

The term oM( f, f ', t) includes two different frequencies of harmonic and parametric
excitations. It is convenient to assume that the solution of equation (7) has frequency u,
which is near the natural frequency 1, and has certain relationships with v and v1. The
relationships between u and v and/or v1 cause many resonant phenomena, which will be
discussed in the next section. To determine an approximate solution of equation (7) for
o small but different from zero, we start with the Krylov–Bogoliubov technique [17] to
transform the dependent variable from f(t) to a(t) and f(t), where

f(t)= a(t) cos U+O(o),

f '(t)=−ua(t) sin U, a'(t) cos U− a(t)f' sin U=0,

f 0(t)=−ua'(t) sin U− u(u+f'(t))a(t) cos U

U= ut+f(t). (8a–e)

From the above equation, it is seen that f 0$−f and that different results will be
expected from equations (6) and (7). Now, we substitute equation (8) into (7), and obtain
the relationships in the form

a'(t)=
−1
u

[(u2 −1)+oM( f, f ', t)] sin U, (9a)

af'(t)=
−1
u

[(u2 −1)+oM( f, f ', t)] cos U. (9b)

If u2 −1=O(o), then equation (9) is in the correct form for averaging. We set u2 =1+ os,
where s=O(1) is the ‘‘detuning’’ parameter which quantitatively describes the nearness
of u to 1. Equation (9) can be rewritten as

a'(t)=−
o

u
sin UN( f, f ', t)0 oF(a, f, t), (10a)

af'(t)=−
o

u
cos UN( f, f ', t)0 oG(a, f, t), (10b)

where

N( f, f ', t)=−2zf '+ (s+2m cos vt)f−(g−2a)f 3 −2oL f 2f '−2aff '2 + e cos v1t.

Thus the original second order differential equation (7) for f(t) has been replaced by two
first order differential equations (10a) and (10b) for the amplitude a(t) and the phase f(t),
respectively. Since o is small, the terms on the right sides of equation (10) are so small that
both a(t) and f(t) vary slowly with time, and the averaging method can be applied to
the standard form (10). Let the averaged amplitude A and the averaged phase angle F

satisfy the averaged equations

A'= o lim
T:a

T−1 g
T

0

F(A, F, t) dt, (11a)

AF'= o lim
T:a

T−1 g
T

0

G(A, F, t) dt, (11b)
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During integration, A and F are taken to be constants. The explicit form of equation (11)
after some calculations is as follows:

A'=−
o

2u 62zAu+
oL

2
A3u+ mAd2u,v sin 2F+ edu,v1 sin F7, (12a)

AF'=−
o

2u 6sA+$a2 (3− u2)−
3g

4 %A3 + mAd2u,v cos 2F+ edu,v1 cos F7, (12b)

where di, j is the Kronecker delta. Equation (12) is the averaged equation of (7), and its
constant solutions correspond to the periodic solutions of equation (7) with period 2p/u.

4. CLASSIFICATION OF AVERAGED SYSTEMS

In this section, we are interested in the resonant oscillations of equation (5) and thus
will concentrate only on the constant solution of (12). Special note should be taken of those
terms in equation (12) when certain definite relationships existed between u, v and v1. The
occurrence of any of these terms in equation (12) indicates the possibility of existence of
a resonant oscillation in system (5). Therefore, the oscillation behavior of the system can
be categorized as follows: (a) v$ u$v1, non-resonant oscillation; (b) u=v1, harmonic
resonance; (c) u= 1

2v, parametric resonance; (d) u=v1 = 1
2v, both harmonic and

parametric resonances.
It has been shown that the basic system (5) admits four cases of resonant oscillations.

Moreover, these cases have been classified according to the relationships existing between
the linear natural frequency of the system and the frequencies of the parametric and
harmonic excitations imposed upon it. The vibration analysis of a system in a given
resonant condition classified above is the determination of the response of the system; that
is, the relationship existing between the relevant frequencies and the amplitude of the
system oscillations.

5. STEADY STATE RESPONSES OF AVERAGED SYSTEMS

Let us now study the averaged equations (12a, b) and investigate their steady state
responses associated with the four different cases mentioned previously. Four relationships
exist between the natural frequency of the system and the frequencies of the parametric
and harmonic excitations. Each frequency relationship that appeared in equation (12) will
result in a set of first order differential amplitude and phase equations. The steady state
amplitudes and phases of such a set of equations will be obtained by letting A'=F'=0
and will be denoted by a subscript 0.

5.1. - 

From equation (12), and using the relationship v$ u$v1, the governing averaged
equations in this case become

A'=−
o

2u 62zAu+
oL

2
A3u7, AF'=−

o

2u 6sA+$a2 (3− u2)−
3g

4 %A37. (13a, b)

The terms in e and m do not appear in equation (13) and here, without loss of generality,
u can be taken to be equal to 1, and then s=0. The amplitudes and phases of the steady
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state solutions do not vary with time, so if we let A'=0 and F'=0 in equation (13), the
constant solutions can be readily obtained as follows:

A0 =0, F0 =arbitrary value.

5.2.  

In this case, substituting u=v1 into equation (8), we obtain the first approximation as
f(t)= a(t) cos [v1t+f(t)]+O(o); and substituting into equation (12), the equations of
the averaged amplitude A and the averaged phase F are given, respectively, by

A'=−
o

2v1 62zAv1 +
oL

2
A3v1 + e sin F7 (14a)

AF'=−
o

2v1 6sA+$a2 (3−v2
1 )−

3g

4 %A3 + e cos F%. (14b)

Setting A'=F'=0 in equations (14a, b), we obtain

a6A6
0 + a4A4

0 + a2A2
0 + a0 =0, F0 = tan−1 X

m+Y
, (15a, b)

where the amplitude equation (15a) is cubic in A2
0 , and for the coefficients

ai , i=0, 2, . . . , 6, and X and Y, see Appendix 1. If the damping terms vanish, z= oL =0,
and equations (15a, b) then become

$a2 (3−v2
1 )−

3g

4 %A3
0 + sA0 2 e=0, F= np, n=0, 1, 2, . . . .

5.3.  

In this case, substituting u= 1
2v into equation (8), we obtain the first approximation as

f(t)= a(t) cos [1
2vt+f(t)]+O(o); and substituting into equation (12), the equations of

the averaged amplitude A and the averaged phase F are given, respectively, by

A'=−
o

v 6zAv+
oL

4
A3v+ mA sin 2F7, (16a)

AF'=−
o

v 6sA+$a2 (3− 1
4v

2)−
3g

4 %A3 + mA cos 2F7. (16b)

Setting A'=F'=0 in equations (16a, b), we obtain

b4A4
0 + b2A2

0 + b0 =0, F0 = 1
2 tan−1 X

m+Y
, (17a, b)

where the amplitude is quadratic in A2
0 , and for the coefficients bi , i=0, 2, 4, see Appendix

1. The constant solutions are readily found as

A0 =2X−b2 2zb2
2 −4b4b0

2b4

.
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If the damping terms vanish, z= oL =0, and these responses become

A0 =2X(−s2 m)>$a2 (3− 1
4v

2)−
3g

4 %, F0 =0.

5.4.     

In this case, u=v1 = 1
2v. The governing averaged equations are

A'=−
o

2u 62zAu+
oL

2
A3u+ mA sin 2F+ e sin F7, (18a)

AF'=−
o

2u 6sA+$a2 (3− u2)−
3g

4 % A3 + mA cos 2F+ e cos F7. (18b)

As might be expected, the analysis of the system (18a, b) is more complicated than those
of the systems (14) and (16). Setting A'=F'=0 in equation (18a, b), the response
equations for this system are found as follows:

c10A10
0 + c8A8

0 + c6A6
0 + c4A4

0 + c2A2
0 + c0 =0, F0 = tan−1 (X/Y), (19a, b)

where the amplitude equation is pentamerous in A2
0 , and for the coefficients ci ,

i=0, 2, . . . , 10, see Appendix 1. If the damping terms vanish, z= oL =0, and the response
equation (19a) becomes

{[y1A3
0 + (s+ m)A0]2 − e2}(y1A2

0 + s− m)2 =0.

6. METHOD OF MULTIPLE SCALES

In this section, we will determine a uniform first order approximate solution of the
original system (6) by the method of multiple scales [5]. Consider the driving frequency
u near natural frequency 1. The proximity of u to unity can be expressed as

u2 =1+ os, (20)

where s is a detuning parameter. The natural frequency of the linear oscillator in equation
(6) can be written in terms of u by using equation (20). Sequentially, we obtain the equation
in the following form:

f 0+ u2f= o[sf−2zf '+2m cos vtf− gf 3 −2oL f 2f '−2a( f 2f 0+ff '2)+ e cos v1t]. (21)

We let

f(t; o)= f0(T0, T1)+ of1(T0, T1)+ . . . , (22)

where T0 = t is a fast scale associated with changes occurring at the frequencies 1, v and
v1, and T1 = ot is a slow scale associated with modulations in the amplitude and phase
caused by the non-linearity, damping and resonances. In terms of the multiple time scales
Tn , the time derivatives becomes

d
dt

=D0 + oD1 + . . . ,
d2

dt2 =D2
0 + o2D0D1 + . . . , (23a, b)
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where Dn = 1/1Tn . Substituting equations (22) and (23) into equation (21) and equating
coefficients of like powers of o, one obtains

D2
0f0 + u2f0 =0, (24)

D2
0 f1 + u2f1 = sf0 −2D1D0 f0 −2zD0 f0 +2m cos vT0 f0 − gf 3

0

−2oL f 2
0D0 f0 −2a[ f 2

0D2
0 f0 + f0(D0 f0)2]+ e cos v1T0. (25)

The solution of equation (24) can be expressed in the complex form

f0(T0, T1)= a(T1) eiuT0 + ā(T1) e−iuT0, (26)

where a(T1) is an undetermined function at this point, which will be determined by
eliminating the secular terms from f1. Based on the solution of (26), we have

−2af 2
0D2

0 f0 =2au2f 3
0 .

Meanwhile, equation (25) can be rewritten as

D2
0 f1 + u2f1 = sf0 −2D1D0 f0 −2zD0 f0 +2m cos vT0 f0 − (g−2au2)f 3

0 −2oL f 2
0D0 f0

−2af0(D0 f0)2 + e cos v1T0. (27)

Substituting equation (26) into equation (27) and expressing 2m cos vT0 and e cos v1T0 in
complex form, we have

D2
0 f1 + u2f1 = [−i2uD1a+ sa−i2zau+ m(adv,0 + ādv,2u )

+3(2au2 − g)a2ā−i2oLa2āu−2aa2āu2 + 1
2edv1,u ] eiuT0

+ [m(adw,2u + ādv,4u )+(2au2 − g)a3

− i2oLa3u+2aa3u2 + 1
2edv1,3u ] ei3uT0 + c.c., (28)

where c.c. denotes the complex conjugate of the preceding term and u is near 1. Depending
on the function a(T1), the particular solution of equation (28) may contain secular terms.
The condition for the elimination of these secular terms (that is, the solvability condition)
is

−i2uD1a+ sa−i2zau+ mā+3(2au2 − g)a2ā−i2oLa2āu−2aa2āu2 + e/2=0. (29)

To obtain the first order approximation, a is considered as a function of T1 only, and,
expressing a(T1) in the polar form,

a(T1)=A(T1) eiF(T1), (30)

where A(T1) and F(T1) are, respectively, the amplitude and phase with the fundamental
frequency. Substituting equation (30) into equation (29) and separating the real and the
imaginary parts, we have

A'=−
o

2u 62zAu+
oL

2
A3u+ mAd2u,v sin 2F+ edu,v1 sin F7, (31a)

AF'=−
o

2u 6sA+0au2 −
3g

4 1 A3 + mAd2u,v cos 2F+ edu,v1 cos F7, (31b)

where ( · )'=d( · )/dT1. The system (31) could also be reduced to the various systems such
as those in section 5.
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The first order solution then becomes

f(t)= f0(T0, T1)=A(T1) cos (ut+F(T1)), (32)

where A(T1) and F(T1) are determined from equations (31a, b). Thus, the uniform first
order approximate solution (32) is obtained for the original system (6) by the method of
multiple scales. Since D2

0 f=−u2f could be obtained from equations (24) and (32), and
equation (6) is equivalent to equation (7), we will have the same resultant solution as
equation (31) if the method of multiple scales is directly applied to equation (7).

7. NUMERICAL RESULTS AND DISCUSSION

The system (7) has been shown to be reduced to two different sets of first order
differential equations (12a, b) and (31a, b) by the averaging method and the method of
multiple scales, respectively. The coefficients of the non-linear damping factor oL and the
non-linear elasticity factor g are the same in equations (12a, b) and (31a, b). However, the
coefficients of the non-linear inertia factor a are different in the phase differential equations
(12b) and (31b). Hence, it is expected that the result discrepancies will happen in the phase
and then in the amplitude between the averaging method and method of multiple scales.

In order to obtain the explicit results for steady state responses of the various resonant
systems, we consider an Al alloy beam which is the same as that of reference [13] (see
Appendix 2). It was seen from references [10, 16] that the manner in which the resonant
curve is bent depends on the sign of the parameter

p=0 3g

4au21u=1
=

3ḡ

4āV2. (33)

From the above equation, the system is hard or soft, depending on the three parameters,
ḡ, ā and V. By adjusting these three parameters, the beam system can be of the soft spring
type when pQ 1, or the hard spring type when pq 1.

If there are no mass (ML ) and spring (k) components in the subsystem to affect the main
system, equation (33) can be rewritten as

p=0·1287/(1−P0/PE ). (34)

In addition, for the case with static loading P0 =0, the system is the soft spring type,
p=0·1287. As the static loading is increased to greater than 0·8713PE , the system becomes
of the hard spring type.

In Figures 2 and 3 are shown the transient amplitudes of the beam system with both
harmonic and parametric resonance where the detuning parameter os=−0·02 and −0·2,
respectively. These curves are obtained by the use of the fourth order Runge–Kutta method
in direct integration of equations (6), (12a, b) and (31a, b), which are the equations of the
original system, the averaging method and the method of multiple scales, respectively.

The difference between the non-linear inertia terms in equations (12b) and (31b) is
3
2o

2as2 0·0025 in Figures 2(a), 2(b) and 2(c). From Figure 2(a), it can be seen that the
beating amplitudes build up and then diminish in the regular pattern in the transient
amplitudes. The differences between the transient amplitudes are shown in Figures 2(b)
and 2(c). These curves are obtained by subtracting the amplitudes of the original system
(6) from those of equations (8a) and (32), obtained by the averaging method and the
method of multiple scales, respectively. Comparing Figure 2(b) with Figure 2(c), it is
observed that the amplitude differences are almost the same, but the amplitudes are not
in the same phase.
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Figure 2. Transient amplitudes. (a) Numerical integration of the original system (6); (b) amplitude differences
between the original system (6) and equation (8a), obtained by the averaging method; (c) amplitude differences
between the original system (6) and equation (32), obtained by the method of multiple scales. oz= ooL =0,
og=0·05483, oa=0·08218, v=1·7888, v1 =0·8944, os=−0·02, om= oe=0·05, f(0)=0·01 and f '(0)=0.

Figure 3. Transient amplitudes. (a) Numerical integration of the original system (6); (b) amplitude differences
between the original system (6) and equation (8a), obtained by the averaging method; (c) amplitude differences
between the original system (6) and equation (32), obtained by the method of multiple scales. os=−0·2: the
other parameters are as in Figure 2.
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Figure 4. Steady state responses per beam length of the harmonic system (oe=0·05) with respect to the
detuning parameter os. ——, the averaging method; – – –, the method of multiple scales. p=1/2, soft spring type
system; p=2, hard spring type system.

Figures 3(a)–(c) are similar to Figures 2(a)–(c), except that os=−0·2. Comparing
Figure 3(a) with Figure 2(a), it can be seen that as the detuning parameter increases, the
transient amplitude decreases. Figures 3(b) and 3(c) reveal the differences in the transient
amplitudes. Comparing Figure 3(b) with Figure 3(c), it can be seen that the amplitude
differences are smaller when obtained by the averaging method than by the method of
multiple scales.

The steady state amplitude A0 could be obtained from the cubic algebraic equation (15)
in A2

0 for the harmonic system, from the quadratic equation (17) in A2
0 for the parametric

system, and from the pentamerous equation (19) in A2
0 for both the harmonic and

parametric system. The steady state amplitude A0 in equations (15), (17) and (19), based
on the physical considerations, are constrained to be positive real number and in the
interval [0, l/2]. In Figures 4–6 are shown the frequency–response relationships of the

Figure 5. Steady state responses per beam length of the parametric system (om=0·05) with respect to the
detuning parameter os. Key and f values as in Figure 4.
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Figure 6. Steady state responses per beam length of the system that is both harmonic and parametric
(oe= om=0·05) with respect to the detuning parameter os. Key and f values as in Figure 4.

harmonic, parametric, and both harmonic and parametric resonance systems, respectively.
The response curve is bent toward increasing frequency for the hard spring type system,
and bent toward decreasing frequency for the soft spring type system.

In order to equate equations (12b) and (31b), it is found that the sufficient condition
is u2 =1. This means that the detuning parameter must have the value s=0 in the
proximity of the driving frequency equation (20). Hence, in Figures 4–6 the responses have
the same value at s=0 for both the averaging method and the method of multiple scales.
The greater value of the absolute detuning parameter =s = will yield a greater difference
between the two methods. Since the system is hard or soft depending on the value p
calculated at u=1 in equation (33), the system is independent of the method being used.

8. CONCLUSIONS

The dynamic behavior of a simply supported beam under both harmonic and parametric
excitations has been investigated by the averaging method and the method of multiple
scales. From the results and comparisons, we conclude the following.

1. Based upon the first order solution assumptions, there exist different transient
amplitudes and steady state responses between the averaging method and the method of
multiple scales, if the non-linear inertial force of the system is considered. Otherwise, the
two methods will lead to the same results.

2. The transient amplitudes obtained by the averaging method and the method of
multiple scales are different in both the amplitude and the phase angle.

3. At the same value of the detuning parameter, the steady state responses obtained by
the averaging method will be greater than those obtained by the method of multiple scales.
However, the steady state responses will be equal at the zero detuning parameter value.

4. Whether the system is hard or soft is independent of the method being used.
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APPENDIX 1: COEFFICIENTS OF AMPLITUDE AND PHASE EQUATIONS

X= x1A2
0 + x2, Y= y1A2

0 + y2,

x1 = 1
2oLu, x2 =2zu, y1 = a/2(3− u2)−3g/4, y2 = s− m,

z1 = x2
1 + y2

1, z2 =2(x1x2 + y1y2), z3 = x2
2 + y2

2,

a6 = z1, a4 = z2 +2my1, a2 = z3 +2my2 + m2, a0 =−e2,

b4 = z1, b2 = z2 +2my1, b0 = z3 +2my2,

c10 = z2
1 , c8 =2z1(z2 +2my1),

c6 = z1(z3 +2my2 + m2)+ z2(z2 +2my1)+ z1z3 − z1m
2 +2my1z2 +2my2z1 +4m2y2

1 ,

c4 = z2(z3 +2my2 + m2)+ z3(z2 +2my1)− z2m
2 +2my1z3 +2my2z2 − e2z1 +8m2y1y2,

c2 = z3(z3 +2my2 + m2)− z3m
2 +2my2z3 − e2z2 +4m2y2

2 , c0 =−e2z3.



       387

APPENDIX 2: THE THIN BEAM

Dimensions=15·0×1·0×0·1 cm.
Material: 5052 (Al alloy).
Young’s modulus=7E08 g/cm2.
Density=2·7 g/cm3.
Static buckling load, PE =2559 g.
v0/2p=101·6 Hz.

APPENDIX 3: NOMENCLATURE

z�=C/2m, damping factor

V=v0z1−P0/PE , mode frequency

v0 = (p2/l2)z(EI/m), natural frequency

PE = p2EI/l2, Euler buckling load

m̄=Pt /[2(PE −P0)], dimensionless load parameter

ḡ= p4K/4ml3, non-linear elasticity factor

ōL = p4CL /4ml3, non-linear damping factor

ā= p4M/4ml3, non-linear inertia factor

t=Vt, non-dimensional time


